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Abstract. The recognition of previously visited places within urban
environments is an essential skill for autonomous vehicles, as it may reduce
localization errors during their navigation. The search for improvements in
detection capabilities within regions where other sensors, such as lasers or
GPS (Global Positioning System) do not perform accurately, has contributed
to considerable advances in location recognition systems. Some state of the art
approaches require a priori knowledge of the environment. However, this is
not always useful due to constant changes in the outside world, variations of
viewpoint, or the occurrence of similar images captured from different locations.
In this work, we propose a methodology to carry out the visual recognition
of places with highly similar characteristics, and prone to spatial variations,
illumination changes and occlusions. Our recognition strategy is based on image
retrieval by means of detector-descriptors pairs, from which the combination
GFTT-SIFT (Good Features to Track - Scale Invariant Feature Transform)
exhibits the best performance. For results refinement, we use an image similarity
threshold based on geometric constraints. Compared to a high-level learning
approach the proposed methodology has a greater precision and discrimination
power to identify images of similar zones, besides differentiating those belonging
to different sites.

Keywords: Place recognition, machine learning, computer vision,
feature detection.

1 Introduction

Visual recognition of previously visited places is a fundamental part of our daily lives.
The study of how living beings recognize places, taking into account the movement
from one place to another, has a long history in neuroscience [3, 11]. Several discoveries
in this area have provided a physiological basis for the representation of spatial locations
in our brain [22, 24].

As humans, when visiting a place for the first time, we seem to be more attentive to
those details that we believe will best represent it, looking for them to be sufficiently
distinctive to create a strong association. Hence, by revisiting that location in the future,
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even when different conditions exist, selected features may be activated leading to an
accurate detection [27].

These concepts find application in a wide variety of research fields. Such is the case
of robotics. One fundamental goal of this area is to develop fully functional systems that
can operate robustly in the real world. Mobile robots, particularly autonomous ones,
must have a deep understanding of their surroundings so that they can be entrusted
with highly complicated or risky responsibilities that humans should not take on, for
example, preventing natural disasters, space and underwater exploration, or even search
and rescue activities. Therefore, visual place recognition (VPR) becomes an extremely
important process as it enables robots to reduce uncertainty and location errors during
their exploration.

This paper proposes a methodology for the identification of previously visited sites
under challenging conditions, mostly based on geometric constraints. In the context of
urban environments, the term “challenging” refers to spatial variations, illumination,
occlusions and the presence of similar elements with great frequency. We first designed
a novel database to depict this sort of settings. We also tested a significant number of
local feature detector-descriptor combinations aimed at selecting the one that performed
the best for our dataset. Place recognition is determined from a geometrical nature
concept that, in spite of being more commonly associated with topics such as visual
odometry, generates highly favorable results in the search for previosly seen places. Our
method achieves a reliable place recognition, without the requirement of prior training,
surpassing the performance of a state of the art algorithm.

This article is organized as follows: relevant work is described in Section 2; the
process of gathering the database for testing our method is explained in Section 3;
proposed method is briefly depicted in Section 4; experimental results are presented
in Section 5; and, finally, conclusions and future research directions are provided in
Section 6.

2 Related Work

State of the art related with VPR includes research works such as the displacement
of a robot along a previously learned route [14]. The information acquired by
means of sensors, i.e. cameras, is first described and then compared with an internal
representation, or map of the environment, in order to estimate the probability of data
matching an image inside the map. Unfortunately, if a robot intends to act without
previous knowledge of its surroundings, this procedure becomes extremely challenging,
mainly due to three main factors:

1. Variability in the appearance of the same scene (changing illumination, occlusions,
weather conditions).

2. The possibility that a scene viewpoint may not always be the same.
3. Images from different locations looking too similar, effect known as

perceptual aliasing.

Other conventional approaches are those based on visual scene detection
and description techniques. These can operate with local features (involving a
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Fig. 1. The left column exhibits images from the same site at different times of the day. The top
left image was captured at 19 h while the bottom left image at 13 h. The second column depicts
two frames of locations that were far from each other, but visually similar that they may appear
to belong to the same site and the same hour.

detection-description pair), such as scale-invariant feature transformations (SIFT) [13]
and Speeded-Up Robust Features (SURF) [2], or, alternatively, resource to whole
images without the need for a detection stage [26].

Since feature extraction does not involve a very complex and demanding process, it is
not surprising to discover combinations of these methods [18, 20]. Nevertheless, a poor
performance of this kind of descriptors has been reported upon varying circumstances,
especially those related with illumination changes [8].

In [6] location or object recognition problems are addressed through the Bag of
Words (BoW). This involves representing image features in terms of a numeric vector,
that can be efficiently compared to other vectors encoding information about a series of
words. These words are the names given to the image descriptors. While this approach
performs well and is scalable to large amounts of data, its performance and functionality
decline when regions with conditions other than those included in the training images
are encountered.

Analogous to the BoW model, the “Bag of Relevant Regions” was presented in [15].
This novel method aimed at describing a scene in terms of relevant regions, extracted
from a visual attention algorithm. Although this work outperforms well-known
approaches such as the Fast Appearance Based-Mapping (FAB-MAP) [5], it outputs
a great amount of false negatives. FAB-MAP applies probabilistic calculations, based
on the local appearance of a site, for its identification. Perceptual aliasing is tackled not
only by considering whether two scenarios are similar in terms of the visual words they
have in common, but also that these are sufficiently distinctive.

As a result, if two sites seem similar but their words are frequently observed,
FAB-MAP generates a low correspondence probability. FAB-MAP uses a BoW model,
with SIFT or SURF features, for image description and computes the dissimilarity of
each word during a training phase. Nevertheless, this training causes a computational
cost increase.

Authors in [9] suggest a solution for VPR based on a BoW built on a local
feature detector-descriptor combination for the purposes of simultaneous localization
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Table 1. List of 22 detector-descriptor combinations used to identify previously visited locations
at different times of the day. The overall success rate was 52.62± 14.79%.

Detector-Descriptor Success % Detector-Descriptor Success %
AVA-ORB 73.33 STAR-SIFT 46.66
AVA-SIFT 73.33 STAR-SURF 44.44
AVA-SURF 73.33 KAZE-KAZE 42.22

GFTT-BRISK 73.33 AKAZE-AKAZE 40
GFTT-ORB 73.33 BRISK-BRISK 40
GFTT-SIFT 73.33 FAST-BRISK 40
GFTT-SURF 73.33 FAST-ORB 40
ORB-ORB 51.11 FAST-SIFT 40

AVA-BRISK 46.66 FAST-SURF 40
STAR-BRISK 46.66 SIFT-SIFT 40
STAR-ORB 46.66 SURF-SURF 40

and mapping (SLAM). The selection of these algorithms aimed at reducing processing
time, although no prior evaluation of detector-descriptor combinations was carried out.
Moreover, although some of the databases used are spatially dynamic, they do not reflect
changes in the hours of the day.

A variety of machine learning methods have also been resorted to. In [23], Histogram
of Oriented Gradients (HOG) [7] fetaures and Local Binary Patterns (LBP) [21] are
concatenated for visual localization. Then, given an image, a Support Vector Machine
(SVM) model identifies the most similar one within a geo-referenced database. Other
approaches rely on Convolutional Neural Networks (CNNs) as strong feature extractors
for place recognition in changing environments.

Researchers in [4] and [28] performed an analysis of the robustness of different CNN
layers against visual appearance and viewpoint modifications across a set of images. It
was concluded that intermediate layers exhibit robustness to appearance alterations,
while higher level layers perform better facing viewpoint shifts.

Notwithstanding, no mechanism is presented for an automatic selection of the best
layer for the task at hand. A dependency on the training database is also evident. Thus,
features that generate good results on one dataset, may have little impact against a
different one. Further works related to deep learning have emerged recently [1, 10, 19,
31]. Nonetheless, overall the main disadvantage is the need for large amounts of training
data and the consequent high computational costs.

3 Dataset Collection

For this work, we collected a new place recognition dataset. Our image collection
focuses on depicting urban environments that could reflect highly challenging
conditions for a computer vision system. Here, the term challenging alludes to settings
that do not contain significant visual information or that are subject to dynamic factors.

The gathering of these images was inspired by [17], where the authors explored
how participants recognized, through defiant conditions, different pleaces recorded
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Fig. 2. Match percentages for the 7 best algorithms evaluated on the 12 most challenging images.
Note that the strongest performing detector-descriptor pairs are AVA-SIFT and GFTT-SIFT.

along a video sequence describing the navigation of a car. The image collection was
gathered at the city of Saltillo, Mexico, driving along a 0.8 km route, at a speed of 30
km/h, through a series of streets which could be identified as belonging to a typical
urban neighborhood.

Three sequences compose the dataset, each of which was captured at different hours
(07 h, 13 h and 19 h) of the day. For this procedure, a GoPro Hero4 camera mounted on
a Chevrolet Cruze vehicle was used.

The data comprises a total of 447 images, 149 per time of the day. The first column
of Figure 1 illustrates examples of images representing the same location at 19 h and 13
h. The second column of the figure presents frames from distinct scenarios that share
very similar characteristics. The database is challenging, since many of the major image
processing problems are addressed, i.e., illumination and spatial variations, occlusions,
or the presence of frequent similar elements along navigation.

In addition, the fact that the images were captured under different environmental
conditions can result in the detection of mismatches in several elements, for example
building colors, plants or even the sky, leading to undesirable detections and confusion.

4 Evaluating Detector-Descriptor Pairs for Geometric-Based VPR

The first need to be fulfilled for geometric-based VPR is to count on a reliable
detector-descriptor pair. For this reason, we conducted a thorough evaluation of 22
detector-descriptor couples for identifying whether a reference image was or not
included in its related video sequence. Such techniques were designated because of
their ease of implementation and access availability. Results are listed in Table 1.

A threshold was applied to every couple in order to determine if the found
correspondences were sufficient to establish a positive match between two images. For
setting this threshold, 80 % of the maximum number of matched points was selected.

From the analysis of the table, it is possible to appreciate how 7 out of 22
combinations reached the highest success rates, while the worst performance was
attributed to other 7 pairs. For this reason, we focused on the 7 highest-rated.
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Fig. 3. Example of GFFT-SIFT qualitative results. It is to note how, even at different times of the
day and between relatively distant scenes, GFTT-SIFT is capable of detecting enough features so
as to determine a positive match among both images.

These 7 best detector-descriptor pairs were then tested on the 12 worst performing
images to point out the strongest performance.

AVA-SIFT (Aqua Visual Attention [16] - SIFT) and GFTT-SIFT (Good Features To
Track [25] - SIFT) emerged as the most outstanding in terms of the number of matches
found, as shown in Figure 2.

Although the number of correspondences is a good indicator for determining
the similarity between two scenes, there is a possibility that this parameter carries
some uncertainty. The latter refers to the fact that if, for a couple of images, a
detector-descriptor generates a number of correspondences lower than the threshold
set (80% of the maximum found), these could be enough to state that both scenes depict
the same location.

Results of the 7 top detector-descriptor combinations were revisited for the 12 worst
performing images, but this time in a qualitative fashion, to verify whether or not they
constituted a good match.

In this way, it was possible to identify that, despite not exhibiting the best
performance under the previous metric, GFTT-SIFT stood out from the rest. This
pairing detected correspondences between images belonging to the same scenario, even
if they suffered from a significant spatial offset as illustrated by Figure 3.

Once the detector-descriptor pair was selected, a new metric was defined to better
discriminate among images that do and do not represent the same site. We chose this
parameter to be based on the epipolar constraint.From this restriction, it is understood
that there must exist a transformation x → l’ of a point in one image with its respective
epipolar line in a second one. The transformation from points to lines results in a
correlation, expressed by the fundamental matrix F [12]:

l’ = Fx. (1)

The fundamental matrix, then, satisfies that for any couple of matching points x and
x’ in two images:
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Fig. 4. Methodology proposed for place recognition in challenging environments.

x′TFx = 0. (2)

This condition is true because, if points x and x’ are correspondent, x’ lies on the
epipolar line l′ = Fx related to point x. In other words, x′Tl′ = x′TFx = 0. Besides, if
image points satisfy x′TFx = 0, rays defined by them are coplanar, a necessary criterion
to establish correspondence between them.

Taking as a reference equation (2), the proposed metric is introduced: if for two
images, the number of matches found by GFTT-SIFT is high enough to generate
a fundamental matrix, they will be considered as positive correspondences, that is,
coming from the same scenario; otherwise, they will be catalogued as belonging to
different locations.

A diagram describing the proposed methodology is shown in Figure 4. As a first
step, starting from a given scene to be recognized, the most important features are
detected and described in order to locate the best match. For this purpose, a classic
detector-descriptor combination such as GFTT-SIFT is adopted.

These correspondences undergo a geometric classification method based on the
epipolar constraint. In this procedure, we managed to eliminate all images that lie below
a defined threshold, and also managed to categorize the remaining images into four main
groups: True and False Positives, and True and False Negatives.

5 Results

The process depicted in Figure 4 was evaluated on the database described in Section 3.
The evaluation consisted of an image retrieval task, i.e., each of the 447 images (149
morning × 149 afternoon × 149 night) was compared to the rest, aiming at determining
whether matches found in each pairing were enough to create a fundamental matrix (i.e.,
satisfy the epipolar constraint).

By means of these trials, a tool that allows visualization and comparison of the
results, known as the similarity matrix, could be constructed. Figure 5a illustrates the
similarity matrix at the end of this experimentation.

Each black dot represents a positive match detected in a pair of images, i.e, that they
belong to the same site. In order to build a ground truth matrix (Figure 5b), all pairing
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Fig. 5. Similarity matrices. Each point (dark regions) within the matrix represents a
correspondence detected in a pair of images from different sequences. On the left side, figure
5a illustrates the results of our method. Figure 5b, on the right, plots the expected result.

images were carefully examined by the main author of this work, who visually decided
which pairs of images were positive or negative matches. From Figure 5, it is to note
that the similarity matrix derived from our method significantly resembles the ground
truth. However, two special cases arise: False Positives and False Negatives. The former
allude to additional points found in the figure’s white zone, where matches would be
assumed to be null.

Further, our results reveal a black box at the upper left side of the matrix. These
artifacts, although located on the main diagonal, are made up of dots that should not
exist, namely, False Positives.

False Negatives, on the other hand, refer to those images in which, despite depicting
the same place, no correspondence between pairs of images was detected. Both cases
constitute specific problems in the performance of the proposed method. In order to
evaluate the presence of false positives and negatives in the performance or our method,
we used a Precision-Recall (PR) curve, shown in Figure 6.

From the curve, it can be clearly perceived that as recall increases, precision
decreases, though in a very low proportion. The accuracy achieved is considerably high,
obtaining a maximum value of 0.9523, dropping only to 0.8371. The sensitivity factor
also produces favorable results. In spite of the minimum value of 0.0519 being quite
low, it reaches the recall limit of 1 with a still high precision. Taking these data into
account, added to the fact that the area under the PR curve is of great dimension, it is
possible to establish that our methodology achieved a strong classification capacity.

For comparative purposes, our dataset was additionally evaluated under a
methodology with different modus operandi: the fast appearance-based mapping
algorithm, or FAB-MAP [5].

FAB-MAP is one of the most popular solutions for VPR based on local image
features. This approach turns to probability for the identification of locations and also
employs a BoW model built upon appearence-based features, e.g, SIFT and SURF.

Despite representing an important milestone within the state of the art, its
performance struggled to obtain favorable results in our database. As evidenced in
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Fig. 6. PR curve produced by GFTT-SIFT detector-descriptor combination. It is noteworthy how,
while the recall increases (up to a value of 1), precision decays only to a rate close to 0.85.
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Fig. 7. FAB-MAP Precision-Recall curve. The prevalence of a high accuracy index (0.85) is
notable. However, as Precision diminishes, Recall reaches just an index near 0.15.

Figure 7, whereas Precision drops close to 0.85, only a 0.15 Recall is reached. Such
score indicates that although this methodology was able to discriminate most of the
possible False Positive cases, there were a large number of False Negatives.

The latter is verified through the generated similarity matrix, depicted at the left of
Figure 8). From the analysis of Figures 5 through 8 of this section, we can establish
that the proposed algorithm, based on a detector-descriptor combination (GFTT-SIFT)
under a geometric strategy, outperforms a learning-based method, such as FAB-MAP,
for recognizing previously visited places subject to dynamic conditions (spatial, lighting
and occlusions).

6 Conclusions and Future Work

In this work we presented a novel database for previously visited places in the context
of VPR. The main particularity of these images is the set of challenging conditions for
computer vision techniques.

Our video sequences were captured at different times of the day, yielding a
combination of spatial and illumination changes, occlusions, similar elements with
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Fig. 8. Similarity matrix generated by FAB-MAP (a) compared to the similarity matrix obtained
through our method (b). The presence of a large number of False Negatives can be seen,
reinforcing the low recall shown in the PR curve of Figure 7.

high repeatability and even environmental factors that may cause confusion, such
as the sky. On the basis of our experiments, we realize that classical computational
algorithms, as combinations of detectors and local feature descriptors, generate
sufficiently good results in location recognition with greater speed and simplicity and
without compromising reliability, in comparison with a state of the art methods that
uses BoW.

We conducted an exhaustive search for the best detector-descriptor combination for
VPR. The Good Features To Track feature detector, along with the SIFT descriptor,
exhibited high robustness in identifying reliable features that corresponded to important
regions in the environment even in adverse situations such as changes in lighting due to
the different day hours.

The designation of the fundamental matrix as a geometric constraint was a relevant
addition for frame classification. Although it is most often applied to tasks such as visual
odometry, it proved to be a solid and accurate method for the identification of previously
visited sites. Our methodology, by itself, was able to produce highly successful results.

From a Precision-Recall Curve, a high measure of sensitivity (recall) was achieved
with a very low decrease in pecision. Finally, these results are supported by a
comparison against a learning method considered a milestone in the state of the art:
FAB-MAP. The obtained plots exhibit a very low recall for this probabilistic algorithm,
as well as a larger drop in precision. Thus, it is demonstrated that our appraoch is able
to perform accurate, fast and simple VPR, without the need to rely on large quantities
of training data, nor consuming high computational time.

As future work we intend to analyze the incorporation of techniques that provide
different perspectives to the geometric ones, for instance, detector-descriptor pairs used
for visual attention. In this way, we could address the highly challenging cases that
could not be completely solved under the proposed methodology. We also aim to test our
methodology under public and commonly used databases related to the VPR problem,
for instance [29, 30].

Similarly, we are looking forward to publishing our novel dataset in a public
repository so that other researchers can make use of it.
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